skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pasquinilli, Harrison"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. While interferometric methods exist for classifying vortex states of light, these techniques usually require destroying the beam of interest to determine the light’s OAM. A recent two-color pump-probe experiment employed strong field ionization and beam sculpting to classify vortex beams. Here, we propose an alternative strong-field method for distinguishing OAM states of light which does not require beam sculpting and instead utilizes a noncollinear terahertz standing wave to probe ionized electrons. We then use classical trajectory Monte Carlo (CTMC) methods to simulate strong-field ionization of helium under this configuration with the terahertz field both on and off. We find that the resulting electron momenta distributions can be used to extract the OAM of the beam, as long as the vortex beam spot size does not exceed 1/4 the terahertz pulse’s wavelength. 
    more » « less
  2. Using a Classical Trajectory Monte Carlo Simulation and a unique setup with a planewave beam perpendicular to a Laguerre-Gaussian beam, the strong field approximation is used to determine the angular momentum of the vortex beam. 
    more » « less